Hyperfinite graphings, part I

Marcin Sabok

McGill University
Winter School in Abstract Analysis 2022

Bipartite graphs

A bipartite graph is a graph without odd cycles.

Bipartite graphs

A bipartite graph is a graph without odd cycles.

Equivalently, a graph G is bipartite if $V(G)$ can be partitioned into two sets such that the edges of G join only vertices in different parts of the partition.

Perfect matchings

A perfect matching in a graph G is an involution whose graph is contained in G.

Perfect matchings

A perfect matching in a graph G is an involution whose graph is contained in G.

Hall's matching theorem
A graph admits a perfect matching if and only if it satisfies the Hall condition: $\left|N_{G}(A)\right| \geq|A|$ for every (finite) subset $A \subseteq V(G)$ (here $N_{G}(A)$ denotes the set of neighbours of A in G).

Fractional perfect matching

A fractional perfect matching in a graph G is a function $\varphi: E(G) \rightarrow[0,1]$ such that

$$
\sum_{y \in N_{G}(x)} \varphi(y)=1
$$

for every $x \in V(G)$.

The Edmonds polytope
Given a bipartite graph G, the set of all fractional perfect matchings in G forms a convex compact set (possibly empty).

Theorem (Edmonds)

If a bipartite graph admits a fractional perfect matching, then it admits a perfect matching

Theorem (Edmonds)

If a bipartite graph admits a fractional perfect matching, then it admits a perfect matching

Proof
Any convex compact set has an extreme point.

Claim

An extreme point φ of the Edmonds polytope of a bipartite graph is a perfect matching.

Claim

An extreme point φ of the Edmonds polytope of a bipartite graph is a perfect matching.

Proof
Suppose φ is not a perfect matching. The set

$$
F=\{e \in E(G): 0<\varphi(e)<1\}
$$

must contain a cycle.

Note that we can add ε on the even edges of the cycle and subtract ε on the odd edges. Write φ_{+}for this fractional perfect matching.

Note that we can add ε on the even edges of the cycle and subtract ε on the odd edges. Write φ_{+}for this fractional perfect matching.

Note that we can also subtract ε on the even edges of the cycle and add ε on the odd edges. Write φ_{-}for this fractional perfect matching.

But now

$$
\varphi=\frac{\varphi_{+\varepsilon}+\varphi_{-\varepsilon}}{2}
$$

which contradicts that φ was an extreme point.

But now

$$
\varphi=\frac{\varphi_{+\varepsilon}+\varphi_{-\varepsilon}}{2}
$$

which contradicts that φ was an extreme point.

This ends the proof of the Claim.

A graph is locally finite if the degree of every vertex is finite.

A graph is locally finite if the degree of every vertex is finite.

A graph is r-regular if the degree of every vertex is equal to r. A graph is regular if it is r-regular for some r.

One-ended graphs

An infinite connected locally finite graph is one-ended if after removing finitely many vertices, it always has only one infinite component.

One-ended graphs

An infinite connected locally finite graph is one-ended if after removing finitely many vertices, it always has only one infinite component.

One-ended Cayley graphs
The Cayley graph of \mathbb{Z}^{d} is one-ended whenever $d>1$.

Two-ended graphs

An infinite connected graph locally finite is two-ended if it is not one-ended and after removing fintiely many vertices it always has at mosttwo infinite connected components.

Two-ended graphs

An infinite connected graph locally finite is two-ended if it is not one-ended and after removing fintiely many vertices it always has at mosttwo infinite connected components.

Two-ended Cayley graphs
A Cayley graph of a group Γ is two-ended if and only if Γ is virtually \mathbb{Z}.

Example

Let $\theta \in[0,1]$ be irrational and consider the rotation $T_{\theta}: S^{1} \rightarrow S^{1}$ by $2 \pi \cdot \theta$. This gives a graph on $V=S^{1}$ where we put an edge between x and $T_{\theta}(x)$ for every $x \in S^{1}$.

Definition

A Borel graph is a graph (V, E) where V is a standard Borel space and E is a symmetric Borel subset of $V \times V$.

Definition

A Borel graph is a graph (V, E) where V is a standard Borel space and E is a symmetric Borel subset of $V \times V$.

Schreier graphs

Suppose Γ is a finitely generated group with a finite symmetric generating set $S \subseteq \Gamma$. If $\Gamma \curvearrowright V$ is a Borel action of Γ on a standardd Borel space V, then we define the Schreier graph on V by putting an edge between x and y if $s \cdot x=y$ for one of the generators $s \in S$.

Definition

A Borel graph is a graph (V, E) where V is a standard Borel space and E is a symmetric Borel subset of $V \times V$.

Schreier graphs

Suppose Γ is a finitely generated group with a finite symmetric generating set $S \subseteq \Gamma$. If $\Gamma \curvearrowright V$ is a Borel action of Γ on a standardd Borel space V, then we define the Schreier graph on V by putting an edge between x and y if $s \cdot x=y$ for one of the generators $s \in S$.

The previous example is the Schreier graph of the induced action of \mathbb{Z} on the circle.

Probability measure preserving (pmp) graphs

Suppose V is endowed with a Borel probability measure ν. A Borel graph $G=(V, E)$ is probability measure preserving (pmp) if for every Borel bijection $f: V \rightarrow V$ such that $f \subseteq E$ we have that f preserves ν.

Probability measure preserving (pmp) graphs

Suppose V is endowed with a Borel probability measure ν. A Borel graph $G=(V, E)$ is probability measure preserving (pmp) if for every Borel bijection $f: V \rightarrow V$ such that $f \subseteq E$ we have that f preserves ν.

A Schreier graphing of $\Gamma \curvearrowright(V, \nu)$ is pmp if and only if the action preserves ν.

Probability measure preserving (pmp) graphs

Suppose V is endowed with a Borel probability measure ν. A Borel graph $G=(V, E)$ is probability measure preserving (pmp) if for every Borel bijection $f: V \rightarrow V$ such that $f \subseteq E$ we have that f preserves ν.

A Schreier graphing of $\Gamma \curvearrowright(V, \nu)$ is pmp if and only if the action preserves ν.

Graphings
We will refer to Borel pmp graphs as to graphings.

Cost

Given a graphing G on (V, ν), there is a natural probability measure on the set of edges $E(G)$ called the cost, which we denote by μ.

Cost

Given a graphing G on (V, ν), there is a natural probability measure on the set of edges $E(G)$ called the cost, which we denote by μ.

It is defined for $F \subseteq E(G)$ as

$$
\mu(F)=\frac{1}{2} \int_{\mathbf{V}} \operatorname{deg}_{\mathbf{F}}(\mathbf{x}) \mathbf{d} \nu
$$

where $\operatorname{deg}_{F}(x)$ is the degree in the spanning subgraph induced by F.

Half of the average degree

For a spanning subgraphing F, its cost equals to the half of the average degree of F.

Half of the average degree

For a spanning subgraphing F, its cost equals to the half of the average degree of F.

Alternately, (e.g. for bipartite graphs) the cost of a set of edges of the form $A \times B$ is equal to

$$
\mu(A \times B)=\int_{A} \operatorname{deg}_{B}(x) d \nu(x)
$$

Hyperfiniteness

A graphing G is hyperfinite if we can write the set of edges

$$
E(G)=\bigcup_{n=1}^{\infty} F_{n} \quad \text { (a.e.) }
$$

as an increasing union such that each F_{n} is a Borel graph and the graph spanned by F_{n} has finite connected components.

Hyperfiniteness

A graphing G is hyperfinite if we can write the set of edges

$$
E(G)=\bigcup_{n=1}^{\infty} F_{n} \quad \text { (a.e.) }
$$

as an increasing union such that each F_{n} is a Borel graph and the graph spanned by F_{n} has finite connected components.

Equivalently, a graphing is hyperfinite if for every $\varepsilon>0$ there exists $V^{\prime} \subseteq V$ with $\nu\left(V \backslash V^{\prime}\right)<\varepsilon$ suh that G has finite components on V^{\prime}.

Hyperfinite equivalence relations (Slaman-Steel, Weiss)
A graphing G is hyperfinite if and only if the induced equivalence relation (whose classes are the connected components of G) is a hyperfinite equivalence relation (a.e.).

Hyperfinite equivalence relations (Slaman-Steel, Weiss)
A graphing G is hyperfinite if and only if the induced equivalence relation (whose classes are the connected components of G) is a hyperfinite equivalence relation (a.e.).

Graph limits (Elek, Schramm)
Hyperfinite graphings appear as Benjamini-Schramm limits of hyperfinite sequences of finite graphs.

Hyperfinite equivalence relations (Slaman-Steel, Weiss)
A graphing G is hyperfinite if and only if the induced equivalence relation (whose classes are the connected components of G) is a hyperfinite equivalence relation (a.e.).

Graph limits (Elek, Schramm)
Hyperfinite graphings appear as Benjamini-Schramm limits of hyperfinite sequences of finite graphs.

Property testing
Hyperfinite graphings and sequences are used also in theoretical computer science in property testing.

Amenable groups
A group Γ is amenable if it admits an invariant finitely additive probability measure on $P(\Gamma)$.

Amenable groups

A group Γ is amenable if it admits an invariant finitely additive probability measure on $P(\Gamma)$.

Examples
All abelian groups are amenable.

Amenable groups
A group Γ is amenable if it admits an invariant finitely additive probability measure on $P(\Gamma)$.

Examples
All abelian groups are amenable.
Schreier graphings of amenable groups
If Γ is amenable, then the Schreier graphing of any Borel action of Γ is hyperfinite

Theorem (Adams)
If a graphing G is hyperfinite, then (a.e.) component of G has at most 2 ends.

Theorem (Adams)

If a graphing G is hyperfinite, then (a.e.) component of G has at most 2 ends.

One-ended graphings
A graphing G is one-ended if the components of G are one-ended.

Theorem (Adams)
If a graphing G is hyperfinite, then (a.e.) component of G has at most 2 ends.

One-ended graphings
A graphing G is one-ended if the components of G are one-ended.
Examples
The Schreier graphing of any free action of an one-ended group is one-ended.

Theorem (Bowen-Kun-S.)
Any bipartite hyperfinite a.e. one-ended regular graphing admits a measurable perfect matching.

Aside of the Axiom of Choice The proof of the theorem can be written without the use of the Axiom of Choice

Aside of the Axiom of Choice
The proof of the theorem can be written without the use of the Axiom of Choice

However, without going into the details, one we can argue abstractly that the Axiom of Choice is not needed.

First let a be a real coding the Borel graphing and the measure. The theorem holds in $L[a]$ as $L[a] \models$ ZFC. Let M be a Borel set in $L[a]$ which is a.e. a perfect matching in $L[a]$

First let a be a real coding the Borel graphing and the measure. The theorem holds in $L[a]$ as $L[a] \models$ ZFC. Let M be a Borel set in $L[a]$ which is a.e. a perfect matching in $L[a]$

Absoluteness
The same Borel set is a.e. a perfect matching in V as this is a $\boldsymbol{\Pi}_{1}^{1}$ statement:

$$
\forall^{\mu} x \exists!y(x, y) \in G \cap M
$$

hence absolute.

